
Tapir
Embedding Fork-Join Parallelism into LLVM's Intermediate Representation

Aaron Li



What is Tapir?

- A set of modifications to the Clang/LLVM compiler to better support parallel 
fork-join C code

- Modifications to compiler front-end
- Additions and modifications to LLVM intermediate representation (IR)
- Additional LLVM optimizations specialized for parallel code
- 6010 additional/modified lines of code to the ~4 million+ LOC LLVM codebase



More on Clang/LLVM

Clang/LLVM

- Open Source
- Clang front-end with LLVM 

middle-end and architecture 
specific back-end

- Clang converts C/C++ code into 
an LLVM Intermediate 
Representation and LLVM deals 
with optimizing the LLVM IR 
before finally converting to 
machine code

Front-End (Clang)

Middle-End (LLVM)

Back-End (LLVM)
Optimizations



LLVM Intermediate Representation (IR)

- Unnamed Register: %<number>
- Named Register: %<name>
- Types
- Functions
- Labels
- Converting from higher level languages to LLVM IR is simplified by the IR’s 

ability to represent high level concepts



Tapir LLVM IR additions

- detach label b, label c
- Terminates a block
- Detaches b and allows it to run in parallel
- Continues execution on current processor at label c
- Every detach has a corresponding reattach

- reattach label c
- Terminates a spawned block
- Identifies the code under label c as being capable of being 

executed in parallel with label b
- Destroys the spawned context

- sync
- Blocks execution until all parallel tasks in the same context as 

this task reattaches

Detach: “Fork”
Reattach: “Join”



How these additions are employed

- Asymmetry (cilk_spawn)
- Tapir IR can be converted back into serial code by 

replacing detach with a branch to the child function and 
replacing the reattach with a branch to the continuation 
function

- Parallel loops (cilk_for)
- Tapir turns cilk_for loops into parallel loops that still 

resemble serial for loops
- Tapir IR can be interpreted as serial code



How Tapir works with existing LLVM code

- Alias analysis
- Prevents optimizations that would cause reordering of instructions that access the same 

memory
- Tapir extends alias analysis to include detach and sync instructions
- Tapir won’t allow instruction reordering if a load or store instruction is being moved into a 

region that can be executed in parallel and the other parallel segment contains a load or store 
instruction that accesses the same memory location.

- Tapir checks the latter by serializing the fork into two pseudo function calls which can 
then be analyzed by LLVM’s alias analysis



- Dominator analysis
- Used to understand if a register value is available at a certain 

point in the control flow graph
- This can be a problem for parallel code if the compiler assumes 

one segment will always execute before another
- The detach/reattach nature of Tapir means a fork in Tapir code 

resembles a traditional if construct
- LLVM’s Dominator analysis correctly determines behaviour with 

no modification!

How Tapir works with existing LLVM code



- Data-Flow analysis
- Knowing what values are present at any given point in a program

- In a serial program it is the union of all predecessor states
- In a parallel program, the continuation block doesn’t have access 

to the spawned child block’s variables
- Tapir solves this by simply excluding the spawned child’s states 

from the union

How Tapir works with existing LLVM code



- Common-subexpression elimination
- LLVM built-in optimization
- Redundant calculations are moved removed and 

replaced with the originally calculated value
- Just works with Tapir code

How Tapir works with existing LLVM code



- Loop-invariant code motion
- Tapir simply analyzes the serial elision

- Remove the continue path
- Then, look for blocks in the loop body that 

dominate the exit block of the loop
- 25 LOC change to LLVM

How Tapir works with existing LLVM code

Corresponding CFG



- Tail-recursion elimination
- Replace recursive calls at the end of a function 

with a branch to the start of the function
- Works like normal but remove all original sync’s 

and place a new sync before each return of the 
resulting code

- sync is only important in ensuring all 
spawned children are finished

- Only 68 lines

How Tapir works with existing LLVM code
*All the begin’s are supposed to be start’s



- Parallel-loop scheduling
- For parallel loops with enough iterations, a 

divide and conquer strategy of spawning tasks 
is more efficient than the previously shown 
methods

- Unnecessary-synchronization elimination
- Removes sync instructions that have nothing to 

wait on
- Puny-task elimination

- Serializes child tasks if they do not contain 
enough work

- Task spawn overhead likely more 
expensive than operation

How Tapir works with existing LLVM code



- Performance hit at worst was 8-9% in 1 of 
the 6 underperforming benchmarks and 
<=0.5% in 3 of the 6 underperforming 
benchmarks

- Performance uplift was at best 18-19% in 
1 of the 14 improved benchmarks and 
>=10% in 6 of the 14 improved 
benchmarks

- Tapir/LLVM is the default compiler for Cilk 
programs today

Results

- Tₛ: Running time of serial elision (with 1 worker)
- T₁: Running time of parallel code with 1 worker
- T₁₈: Running time of parallel code with 18 workers (Running on 

an AWS EC2 c4.8xlarge instance)
- Paper: The c4.8xlarge is a dual CPU 36 core 

instance
- AWS: the c4.8xlarge is a 36 vCPU 

instance
- Paper: The Intel Xeon E5-2666 v3 is an 18 core 

CPU
- Various sources say the E5-2666 v3 

is a 10 core CPU



- clang -S --emit-llvm <file.c>
- Produces .ll LLVM IR from Cilk code
- Playing around with -O0, -O1, … ,-O3 can give 

various levels of readability to resulting LLVM IR
- opt --dot-cfg <ir.ll>

- Produces a .dot file for visualizing the CFG with 
graphviz

- dot -Tpng <dot.dot>
- Produces a png of the given .dot file

Useful Commands

Using -O3 on inc.c resulted in LLVM producing 
SIMD SSE2/MMX/AVX2 code

-O1

-O3

inc.c


